www.nature.com/bjp

Diadenosine polyphosphates as antagonists of the endogenous P2Y₁ receptor in rat brain capillary endothelial cells of the B7 and B10 clones

¹Paul Vigne, ²Jean Philippe Breittmayer & *,¹Christian Frelin

¹Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France and ²Inserm U343, Hopital de l'Archet, BP79, 06202 Nice Cedex 3, France

- 1 Diadenosine polyphosphates (Ap_nAs, n=2-7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of Ap_nAs in clones of rat brain capillary endothelial cells that express P2Y₁ receptors (B10 cells) or both P2Y₁ and P2Y₂ receptors (B7 cells).
- **2** B10 cells responded to Ap₃A with rises in intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$). This response was prevented by adenosine-3'-phosphate-5'-phosphate, an antagonist of P2Y₁ receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.
- 3 Ap_nAs inhibited ADP induced increases in [Ca²⁺]_i mediated by P2Y₁ receptors by shifting ADP concentration-response curves to larger concentrations. Apparent K_i values were estimated to be $6~\mu M$ for Ap₄A, $10~\mu M$ for Ap₅A and $47~\mu M$ for Ap₆A. Ap₂A and Ap₃A were much less active.
- 4 Ap_nAs were neither agonists nor antagonists of the endogenous P2Y₂ receptor in B7 cells.
- 5 Ap_nAs are neither agonists nor antagonists of the G_i-coupled, ADP receptor in B10 cells.
- 6 The results suggest that most actions of Ap_nAs in B7 and B10 cells can be accounted for by endogenous P2Y₁ receptors. Ap₄A, Ap₅A and Ap₆A are specific antagonists of endogenous Ca²⁺coupled P2Y₁ receptors.

British Journal of Pharmacology (2000) 129, 1506-1512

Keywords: Purinergic receptors; endothelial cells; calcium; cyclic AMP

Abbreviations: A2P5P, adenosine-2'-phosphate-5'-phosphate; A3P5P, adenosine-3'-phosphate-5'-phosphate; [Ca²⁺]_i, cytosolic Ca²⁺ concentration; PPADS, pyridoxal phosphate-6-azophenyl-2',4'-sulphonic acid

Introduction

Diadenosine polyphosphates (Ap_nAs, n=2-7) form a group of compounds that consist of two adenosine molecules bridged by 2-7 phosphate groups. They are stored in platelet dense granules, in chromaffin granules of the adrenal medulla, in Torpedo cholinergic vesicles and in rat brain synaptic terminals. Possible roles as neurotransmitters and stress signals have been proposed (Hoyle, 1990; Hoyle et al., 1996; Pintor et al., 1997). Actions of Ap_nAs on the cardiovascular system have recently been reviewed (Flores et al., 1999). Some of the compounds promote platelet aggregation, while others are inhibitory. Compounds with four or more phosphates are usually vasoconstrictors, while those with three or less phosphates are vasodilators (Ralevic et al., 1995). Ap_nAs also produce marked cardiac electrophysiological effects (Flores et

Ap_nAs are thought to act via known metabotropic and ionotropic purinoceptors of the P2 type. Ap₃A was reported to be an agonist of the chick P2Y₁ receptor (Pintor et al., 1996) and of the human P2Y₂ receptor (Lazarowski et al., 1995). Ap₄A was reported to be an agonist of the chick, turkey and human P2Y₁ receptors (Pintor et al., 1996; Schachter et al., 1996), of the human P2Y₂ receptor (Lazarowski et al., 1995) and of rat P2X₂ receptors (Pintor et al., 1996). Results obtained with endogenous receptors are less clear. Ap₃A and Ap₄A have been reported to be either active or inactive at the P2Y₁ receptor depending on the cell line used (Chen et al.,

1996; Conant et al., 1998; Mateo et al., 1996; Stachon et al., 1998). Ap₄A was reported to be inactive at endogenous P2Y₂ receptors (Chen et al., 1996; Conant et al., 1998; Mateo et al., 1996). Different hypotheses may account for these conflicting results. (i) Contamination of commercially available Ap_nAs by mononucleotides may lead to spurious responses (Conant et al., 1998). (ii) P2 receptors may not have been correctly identified in cell lines and tissues. (iii) Properties of the P2 receptors in recombinant expression systems may be different from those in tissues (Hechler et al., 1998b; Palmer et al., 1998). (iv) Ap_nAs may act via receptors that are yet to be identified (Miras-Portugal et al., 1996; 1998).

This study analyses the actions of Ap_nAs in two clones of rat brain capillary endothelial cells: B7 and B10 cells. Previous results from this laboratory have shown that while B7 cells express mRNAs that code for P2Y₁ and P2Y₂ receptors, B10 cells only express P2Y₁ receptor transcripts (Feolde et al., 1995; Webb et al., 1996). Nucleotides have two major actions in B7 and B10 cells. They induce a mobilization of intracellular Ca2+ stores and inhibit cholera toxin stimulated adenylyl cyclase via a pertussis toxinsensitive, G_i-mediated, mechanism (Frelin et al., 1993; Webb et al., 1996). Detailed pharmacological analyses using additivity experiments, desensitization experiments and specific inhibitors of P2Y₁ receptors allowed us to attribute these responses to three types of receptors. Intracellular Ca2+ rises ([Ca2+]i) in B10 cells have been attributed to the P2Y₁ receptor. ADP and 2-methyl-thio-ADP are agonists of this receptor. ATP and its derivatives, pyridoxal phosphate6-azophenyl-2',4'-sulphonic acid (PPADS), adenosine-2'phosphate-5'-phosphate (A2P5P) and adenosine-3'-phosphate-5'-phosphate (A3P5P) and their sulphate derivatives are antagonists (Vigne et al., 1998b; Hechler et al., 1998a). [Ca²⁺]_i responses in B7 cells have been attributed to the P2Y₁ receptor and to an additional receptor that is specific for ATP and UTP on the basis of additivity and desensitization experiments (Frelin et al., 1993; Vigne et al., 1994). This pharmacological profile and the observation that B7 cells express P2Y₂ receptor mRNAs suggest the presence of functional P2Y₂ receptors. The G_i-coupled receptor in B10 cells was initially thought to be the P2Y₁ receptor (Webb et al., 1996) but this conclusion was challenged by more recent experiments using selective antagonists of the P2Y₁ receptors (Hechler et al., 1998b). Taken together these results have suggested that these clones of endothelial cells express three forms of purinoceptors: (i) a Ca2+-coupled P2Y₁ receptor, (ii) a Ca²⁺-coupled P2Y₂ receptor and (iii) a Gi-coupled ADP receptor. It should be noted that the properties of B7 and B10 cells may not be representative of those of native brain capillary endothelial cells which do not express P2Y₁ receptors and express an additional P2Y₄ receptor (Anwar et al., 1999).

Methods

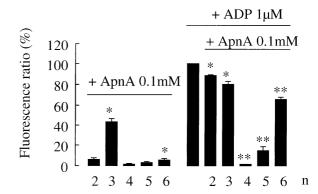
Cell culture

Rat brain capillary endothelial cells of the B7 and B10 clones were cultured as described previously (Vigne *et al.*, 1998a). The culture medium was Dulbecco's modified Eagle's medium supplemented with 10% foetal calf serum, 100 units ml⁻¹ penicillin and 100 μ g ml⁻¹ streptomycin.

Intracellular Ca²⁺ measurements

For intracellular Ca2+ measurements, suspended cells were incubated for 30 min in the presence of 5 μ M indo-1/AM, centrifuged at $1000 \times g$ and resuspended into an Earle's salt solution (composition in mm): NaCl 140, KCl 5, CaCl₂ 1.8, MgCl₂ 0.8, glucose 5, HEPES 25, pH 7.4) at a density of 10^6 cells ml⁻¹. Nucleotides (10 μ l) were added to test tubes and the reaction was initiated by adding 90 μ l of the cell suspension. These conditions ensured that cells were exposed at the same time to agonists and antagonists. After mild vortexing, tubes were inserted into a FacStar Plus cytometer (Becton Dickinson) (Vigne et al., 1994). Mean fluorescence ratios were determined for 1000 cells sampled between 8 and 10 s after the addition of nucleotides. This time corresponded to the peak of the [Ca²⁺]_i transient (Vigne et al., 1994). Fluorescence ratios were calculated in arbitrary units set to a value of 100 for unstimulated cells. This value takes into account the autofluorescence and the basal indo-1 fluorescence. Using these settings, ADP (1 μ M) or UTP (0.1 mM, in B7 cells only) increased the indo-1 fluorescence ratio to 200-250 arbitrary units. Responses were calculated as the difference between the fluorescence units observed in stimulated cells and those observed in control unstimulated cells. Means of triplicate measurements were used. Controls were included in each experimental protocol. All responses were expressed as a percentage of the response to 1 μ M ADP, typically 100-150 arbitrary units. Experiments were repeated at least three times using different batches of cells.

Adenylyl cyclase assays


B10 cells grown in 6-well tissue culture clusters were labelled with 1 μ Ci ml⁻¹ of [³H]-Adenine (Amersham, 26 Ci mmol⁻¹) overnight in complete culture medium. The culture medium was then removed, cells were rinsed with an Earle's salt solution and further incubated into an Earle's salt solution supplemented with 0.1 mM isobutylmethylxanthine. After 10 min at 37°C, cells were stimulated with 1 μ M forskolin in the absence or the presence of diadenosine polyphosphates (0.1 mm) and or of ADP (5 μ M). After 5 min, the incubation solution was aspirated off and the reaction was stopped by addition of 500 μ l of ice cold 5% trichloracetic acid supplemented with 2 mm ATP and 2 mm cyclic AMP (used as carriers). After 15 min of extraction at 4°C, cell extracts were harvested and the tritium label associated with cyclic AMP was determined using sequential chromatographies on Dowex and alumina columns (Bozou et al., 1986). In some experiments a protein-binding assay (Immunotech, Marseille, France) was used.

Materials

Ap_nAs, adenosine-3'-phosphate-5'-phosphate, ADP, UTP, creatine, creatine phosphate, creatine phosphokinase (Type III from bovine heart), indo-1/AM, forskolin, isobutylmethylxanthine and apyrase VII were purchased from the Sigma Chemical Co. Reagents were dissolved into an Earle's salt solution. In some experiments it was necessary to purify solutions of Ap_nAs from contaminating ADP (see Results). Solutions of Ap₃A and Ap₆A (1 mM in Earle's salt solution) were treated for 20 min with 1 unit ml⁻¹ apyrase VII or with a mixture of 20 units ml⁻¹ creatine phosphokinase and 10 mM creatine phosphate. The mixture was then added to the cells without inactivation of the enzymes. We checked that these treatments abolished the Ca^{2+} mobilizing action of a 10 μM solution of ADP. To remove trace contaminants of ATP, solutions of Ap_nAs were treated for 30 min with a mixture of 20 units ml⁻¹ creatine phosphokinase and 10 mM creatine.

Curve fitting and statistical analysis

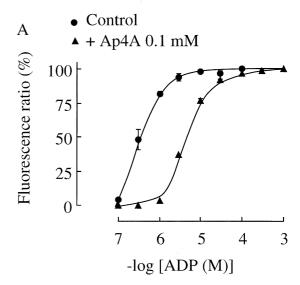
Curves were fitted with a logistic equation using the SigmaPlot software (Jandel Scientifics). Mean \pm s.e.mean from n independent

Figure 1 Actions of Ap_nAs on $[Ca^{2+}]_i$ in B10 cells. Indo-1 loaded cells were incubated in the presence of 0.1 mM Ap_nA or of 1 μ M ADP and 0.1 mM Ap_nAs and mean indo-1 fluorescence ratio were recorded at 10 s. Means \pm s.e.mean (n=3) are shown. Increases in indo-1 fluorescence ratio were expressed relative to that produced by 1 μ M ADP. *P<0.05 and **P<0.01 as compared to controls. n on the abscissa means the number of phosphate groups in the Ap_nAs tested.

dent experiments are indicated. Statistical analysis was performed by use of Student's *t*-test.

Results

Actions of Ap_nAs on $[Ca^{2+}]_i$ in B10 cells


Actions of Ap_nAs on intracellular Ca²⁺ were analysed using indo-1 loaded B10 cells. Figure 1 shows that only Ap₃A and Ap₆A increased [Ca²⁺]_i in B10 cells. Ca²⁺ transients induced by Ap₃A had the same shape and time course as ADP-induced Ca²⁺ transients and were largely independent of the presence of extracellular Ca²⁺ (data not shown). The efficacy of 0.1 mM Ap₃A was only 44% that of 1 μ M ADP, the natural agonist of P2Y₁ receptors (Figure 1). Actions of Ap₃A were prevented by 0.1 mm A3P5P, an antagonist of P2Y₁ receptors. They were also highly variable from one batch of compound to the other. These suggested that the [Ca2+]i responses to Ap3A could be due to contaminating ADP. Considering that a concentration of 0.7 µM ADP induced half maximum activation of P2Y₁ receptors in B10 cells (see below), it can be calculated that the [Ca²⁺]_i rise induced by 0.1 mM Ap₃A could be accounted for by only a 0.2% contamination of Ap₃A by ADP. To check the hypothesis that actions of Ap₃A were due to contaminant ADP, solutions of Ap₃A were treated with ADP degrading enzymes. Creatine phosphokinase (in the presence of creatine phosphate) decreased the efficacy of 0.1 mm Ap₃A from 44 to 10% that of 0.1 mm ADP. Conversely apyrase decreased the efficacy of $0.1 \text{ mM Ap}_3\text{A}$ from 44 to 7% that of 1 μM ADP. These results suggested that low amounts of ADP contaminated Ap₃A solutions and were probably responsible for most of the observed rises in [Ca²⁺]_i. The action of 0.1 mm Ap₆A which was at the limit of detectability was not investigated.

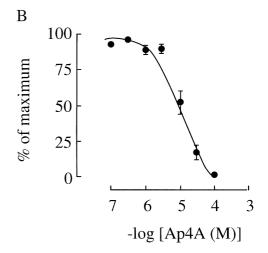

We next looked for possible antagonistic actions of Ap_nAs on $P2Y_1$ responses using ADP, the natural agonist of $P2Y_1$ receptors. The EC_{50} value for the action of ADP was $0.7\pm0.1~\mu M~(n=9)$ in this series of experiments. Cells were stimulated with a submaximally effective concentration of ADP (1 μM) in the presence of 0.1 mM and Ap_nAs . These experiments do not require the use of enzymatically purified Ap_nAs for 1 μM ADP was already present in the assay medium to stimulate receptors. Figure 1 shows that all Ap_nAs inhibited the action of ADP. Inhibition was almost complete with Ap_4A and Ap_5A . Actions of Ap_2A and Ap_3A were not analysed.

Figure 2A shows concentration-response curves for the action of ADP in the absence or the presence of Ap₄A. Ap₄A (0.1 mm) shifted the ADP concentration-response curve to larger concentrations without modifying the maximum efficacy of ADP. This suggested an apparent competitive mechanism. The 13 fold shift led us to calculate a pA₂ value for Ap₄A of 5.9 corresponding to an apparent K_i value of 8 μ M. Figure 2B shows the concentration-response curve for the inhibition by Ap₄A of ADP (1 μ M) responses. In three independent experiments such as those presented in Figure 2B, the concentration of Ap₄A that produced half-maximum inhibition of the action of ADP (IC₅₀) was 11.4±1.5 μ M. An apparent K_i value for Ap₄A was deduced from the Cheng-Prusoff relationship:

$$IC_{50} = Ki*\left(1 + \frac{[ADP]}{K_{(ADP)}}\right)$$

Considering that $K_{\text{(ADP)}}$ was 0.7 μM , [ADP] was 1 μM and IC₅₀ was 11.4 μM , a K_{i} value of 5 μM was calculated. It was close to the value found in the preceding experiment.

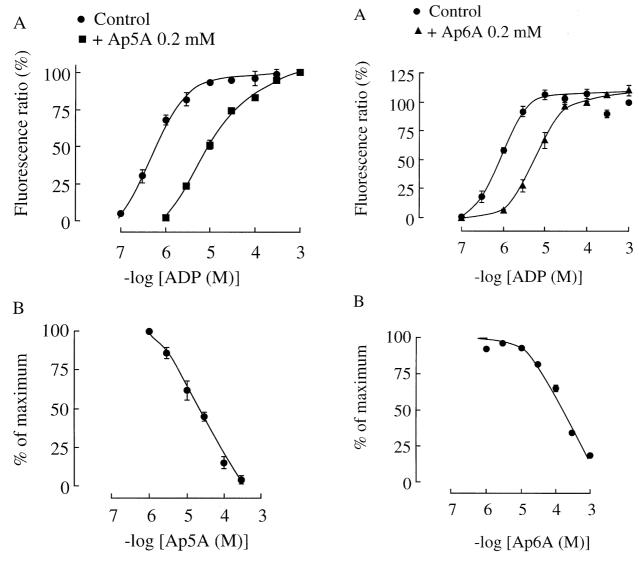
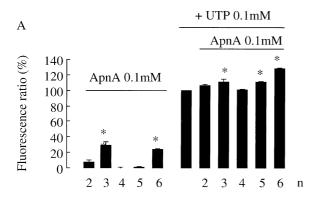


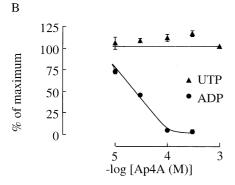
Figure 2 Antagonistic actions of Ap₄A in B10 cells. (A) Concentration-response curves for the action of ADP in the absence or the presence of 0.1 mM Ap₄A. EC_{50} values for the action of ADP were 0.40 and 5.2 μ M in the absence and the presence of Ap₄A respectively. Data were normalized to the effect of 1 mM ADP in the absence of Ap₄A. (B) Concentration-response curve for the inhibition by Ap₄A of ADP (1 μ M) responses. Means \pm s.e.mean (n= 3) are shown.

Figure 3A shows that Ap₅A (0.2 mM) shifted the ADP concentration-response curve to larger concentrations without modifying the maximum efficacy of ADP. The 16 fold increase in EC₅₀ value indicated a pA₂ value for Ap₅A of 4.9 corresponding to an apparent K_i value of 13 μ M. Figure 3B shows the concentration-response curve for the inhibition by Ap₅A of ADP (1 μ M) responses. Half-maximum inhibition was observed at 20.0±1.6 μ M Ap₅A (n=3). Application of the Cheng-Prusoff relationship led to an apparent K_i value of 8 μ M, close to the value found in the preceding experiment.

Figure 4A shows that Ap₆A (0.2 mM) shifted the ADP concentration-response curve to larger concentrations without modifying the maximum efficacy of ADP. The 9 fold increase in EC₅₀ value indicated a pA₂ value for Ap₆A of 4.6 corresponding to an apparent K_i value of 25 μ M. Figure 4B shows the concentration-response curve for the inhibition by Ap₆A of ADP responses. Half-maximum inhibition was observed at 168±14 μ M Ap₆A (n=3). Application of the Cheng-Prusoff relationship led to an apparent K_i value of 69 μ M.

Figure 3 Antagonist actions of Ap₅A in B10 cells. (A) Concentration-response curves for the action of ADP in the absence or the presence of 0.2 mM Ap₅A. EC₅₀ values for the action of ADP were 0.6 and 9.7 μ M in the absence and the presence of Ap₅A respectively. Data were normalized to the effect of 1 mM ADP in the absence of Ap₅A. (B) Concentration-response curve for the inhibition by Ap₅A of ADP (1 μ M) responses. Means \pm s.e.mean (n=3) are shown.


Figure 4 Antagonist actions of Ap₆A in B10 cells. (A) Concentration-response curves for the action of ADP in the absence or the presence of 0.2 mM Ap₆A. EC₅₀ values for the action of ADP were 0.8 and 7.5 μ M in the absence and the presence of Ap₆A respectively. Data were normalized to the effect of 1 mM ADP in the absence of Ap₆A. (B) Concentration response curve for the inhibition by Ap₆A of ADP (1 μ M) responses. Means \pm s.e.mean (n=3) are shown.


A major difficulty encountered with purinergic ligands is that actions measured could be due to other nucleotides present in commercial powders or produced for instance by cellular ecto-enzymes. We checked that AMP and adenosine (up to 1 mM) did not inhibit ADP responses in endothelial cells and were thus unlikely to mediate inhibitory actions of Ap_4A , Ap_5A and Ap_6A . We also checked that purification of Ap_nA solutions from ATP using creatine phosphokinase and creatine did not modify the properties of antagonistic Ap_nAs . Taken together these indicated that inhibitory actions of Ap_nAs in endothelial cells were unlikely to be mediated by adenosine, AMP or ATP.

Actions of Ap, As in B7 cells

Identical experiments were performed using cells of the B7 clone. These cells were of interest because they express functional P2Y₂ receptors in addition to P2Y₁ receptors.

Figure 5A shows that Ap₃A and Ap₆A induced increases in [Ca²⁺]_i that were of smaller amplitude than those induced by ADP. Other Ap_nAs were inactive. These actions were decreased to less than 10% of the amplitude of the ADP $(1 \mu M)$ signal after enzymatic degradation of contaminating ADP using creatine phosphokinase or apyrase. Figure 5A further shows that Ap_nAs did not antagonize UTP responses. UTP and some Ap_nAs (Ap₃A, Ap₅A and Ap₆A) had additive actions on [Ca2+]i. The reasons for these differences was not investigated. It could simply be due to the fact that UTP and a contaminant present in Ap_nA solutions (presumably ADP) activated two independent receptors. Finally, Figure 5B shows that Ap₄A blocked ADP-responses mediated by P2Y₁ receptors with properties similar to those observed in B10 cells. UTP responses were insensitive to Ap₄A. These results indicate that Ap_nAs had neither agonistic nor antagonistic actions at the endogenous P2Y₂ receptor in B7 cells.

Figure 5 Actions of Ap_nAs in B7 cells in B10 cells. (A) Indo-1 loaded cells were incubated in the presence of 0.1 mM Ap_nAs or of 1 μ M UTP and 0.1 mM Ap_nAs and mean indo-1 fluorescence ratio were recorded at 10 s. Increases in indo-1 fluorescence ratio were expressed relative to that produced by 0.1 mM UTP. (B) Concentration-response curves for the actions of Ap₄A on ADP (1 μ M) and UTP (0.1 mM) responses. *P<0.05 and **P<0.01 as compared to controls. n on the abscissa means the number of phosphate groups in the Ap_nAs tested. Means \pm s.e.mean (n=3) are shown.

Actions of Ap_nAs on adenylyl cyclase in B10 cells

Formation of cyclic AMP can be assessed either by protein binding assays or by following the conversion of [3H]-ATP into [³H]-cyclic AMP. The first technique led us to the conclusion that Ap₄A, Ap₅A and Ap₆A (at concentrations > 10 μ M) stimulated adenylyl cyclase. Further studies showed however that this conclusion was erroneous and due to the fact that Ap_nAs recognized the antibody directed against cyclic AMP and interfered with the assay. When adenylyl cyclase activity was measured from the conversion of [3H]-ATP into [3H]-cyclic AMP, no stimulatory activity of Ap_nAs could be detected. We also observed that in contrast to ADP, Ap, As (0.1 mm) did not inhibit forskolin stimulated adenylyl cyclase activity. Finally, we checked that Ap_nAs (0.1 mM) did not inhibit ADP-induced inhibition of forskolin-stimulated adenylyl cyclase (data not shown). These results indicated that Ap_nAs are neither agonists nor antagonists of the G_i-coupled ADP receptor.

Discussion

This paper first shows that Ap_nAs are not agonists of endogenous $P2Y_1$ and $P2Y_2$ receptors in endothelial cell clones. Weak actions of Ap_3A and Ap_6A were observed but they were likely due to low amounts of contaminating ADP. The lack of clear agonist action of Ap_nAs was surprising. Ap_3A and Ap_4A have been reported to stimulate recombinant $P2Y_1$

and P2Y₂ receptors as well as the endogenous P2Y₁ receptors in ECV305 endothelial cells (Lazarowski *et al.*, 1995; Pintor *et al.*, 1996; Schachter *et al.*, 1996; Mateo *et al.*, 1996; Stachon *et al.*, 1998; Conant *et al.*, 1998). Our results are however in agreement with previous reports indicating no action of Ap₄A on other endogenous P2Y₂ receptors (Chen *et al.*, 1996; Conant *et al.*, 1998; Mateo *et al.*, 1996). Reasons for these differences are discussed below.

A second observation of this paper is that Ap₄A, Ap₅A and Ap₆A inhibit ADP responses in B10 cells. Knowing that ADP responses in these cells are sensitive to PPADS (Vigne *et al.*, 1998a,b), A2P5P and A3P5P (Hechler *et al.*, 1998a) and that these cells only express mRNA species that code for P2Y₁ receptors (Webb *et al.*, 1996), an obvious conclusion is that Ap₄A, Ap₅A and Ap₆A inhibit P2Y₁ receptors. This conclusion is consistent with the results of experiments using platelets. Ap₄A, Ap₅A and Ap₆A have been reported to prevent platelet aggregation to ADP (Harrison *et al.*, 1975). Ap₅A was further described as a competitive antagonist of ADP-induced rises in [Ca²⁺]_i in human platelets (Hall & Hourani, 1993). This action was initially attributed to the platelet P_{2T} receptor. It is now known to be mediated by P2Y₁ receptors (Daniel *et al.*, 1998; Fagura *et al.*, 1998; Hechler *et al.*, 1998a; Jin *et al.*, 1998).

A recent paper (King *et al.*, 1999) established that diinosine polyphosphates but not Ap_nAs were antagonists at P2X₁ and P2X₃ receptors. It would be of interest to test the possibility that Ap_nAs are deaminated by endothelial cells and that actions of Ap_nAs are in fact mediated by the corresponding diinosine polyphosphates.

We have previously described that ATP is a natural antagonist of the endogenous P2Y₁ receptor in B10 cells. The K_i value for ATP is 23 μ M (Hechler *et al.*, 1998b). Ap₄A and Ap₅A are slightly more potent than ATP with apparent K_i values of 6–10 μ M. These values clearly rule out the possibility that the observed antagonistic actions were mediated by contaminating ATP. Ap₆A is less potent than ATP. Synthetic antagonists of the endogenous P2Y₁ receptor in B10 cells have previously been described. These are 2-chloro-ATP (K_i =27 μ M), 2-methylthio-ATP (K_i =36 μ M), benzoylATP (K_i =5 μ M), A2P5P (K_i =5 μ M) and A3P5P (K_i =3 μ M) (Hechler *et al.*, 1998a,b; Vigne *et al.*, 1999). Ap₄A is thus as potent as adenosine biphosphates.

These results indicate that Ap_nAs (n=4-6) are antagonists of the endogenous P2Y1 receptor in B7 in B10 cells and in platelets. They are agonists of P2Y₁ receptors expressed in recombinant expression systems (see Introduction). Similar discrepancies have already been noticed with ATP (Hechler et al., 1998b; Palmer et al., 1998), benzoyl ATP (Boyer et al., 1996; Vigne et al., 1999), A2P5P, A3P5P and their sulphate derivatives (Boyer et al., 1996; Hechler et al., 1998a; Jin et al., 1998). One possibility could be that many adenine nucleotides (except ADP and 2-methylthio-ADP) are in fact partial agonists of P2Y₁ receptors and that receptor densities determine whether nucleotides have agonist or antagonist properties (Palmer et al., 1998). An agonist activity may prevail in the presence of a large receptor reserve. An antagonist activity may prevail at low receptor densities. This hypothesis cannot be tested in the absence of suitable radioligands to titrate receptors.

Another proposed action of adenine nucleotides in B10 cells is to inhibit adenylyl cyclase (Webb *et al.*, 1996). This paper shows that Ap_nAs have no action (either stimulatory or inhibitory) on adenylyl cyclase in B10 cells. This suggested that Ap_nAs do not recognise the G_i-coupled, ADP receptor in B10 cells. Thus it may be concluded that ADP recognises two types of receptors in B10 cells (i) a [Ca²⁺]_i coupled receptor which is

sensitive to Ap_nAs and (ii) a Gi-coupled receptor which is insensitive to Ap_nAs. A similar conclusion was drawn previously from studies using PPADS, A2P5P and A3P5P. These compounds inhibit ADP-induced intracellular Ca²⁺ mobilization in B10 cells. They do not inhibit ADP-induced inhibition of adenylyl cyclase (Webb *et al.*, 1996; Hechler *et al.*, 1998a).

In conclusion, this study indicates that all actions of Ap_nAs in B7 and B10 cells can be accounted for by the endogenous

P2Y₁ receptors. Ap₄A, Ap₅A and Ap₆A are antagonists of this receptor.

This work was supported by the CNRS, the Association pour la Recherche sur le Cancer and the Fondation de France. We are grateful to N. Boyer and J. Kervella for expert technical assistance.

References

- ANWAR, Z., ALBERT, J., GUBBY, S.E., BOYLE, J.P., ROBERTS, J.A., WEBB, T.E. & BOARDER, M.R. (1999). Regulation of cyclic AMP by extracellular ATP in cultured brain capillary endothelial cells. *Br. J. Pharmacol.*, **128**, 465–471.
- BOYER, J.L., ROMERO-AVILA, T., SCHACHTER, J.B. & HARDEN, T.K. (1996). Identification of competitive antagonists of the P2Y₁ receptor. *Mol. Pharmacol.*, **50**, 1323–1329.
- BOZOU, J.C., AMAR, S., VINCENT, J.P. & KITABGI, P. (1986). Neurotensin mediated inhibition of cyclic AMP formation in neuroblastoma N1E115 cells: Involvement of the inhibitory GTP-binding component of adenylate cyclase. *Mol. Pharmacol.*, **29**, 489–496.
- CHEN, B.C., LEE, C.M., LEE, Y.T. & LIN, W.W. (1996). Characterization of signaling pathways of P2Y and P2U purinoceptors in bovine pulmonary artery endothelial cells. *J. Cardiovasc. Pharmacol.*, **28**, 192–199.
- CONANT, A.R., FISCHER, M.J., MCLENNAN, A.G. & SIMPSON, A.W.M. (1998). Characterization of the P2 receptors on the human umbilical vein endothelial cell line ECV304. *Br. J. Pharmacol.*, **125**, 357–364.
- DANIEL, J.L., DANGELMAIER, C., JIN, J., ASHBY, B., SMITH, J.B. & KUNAPULI, S.P. (1998). Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. *J. Biol. Chem.*, **273**, 2024–2029.
- FAGURA, M.S., DAINTY, I.A., MCKAY, G.D., KIRK, I.P., HUMPH-RIES, R.G., ROBERTSON, M.J., DOUGALL, I.G. & LEFF, P. (1998). P2Y₁-receptors in human platelets which are pharmacologically distinct from P2YADP-receptors. *Br. J. Pharmacol.*, **124**, 157–164.
- FEOLDE, E., VIGNE, P., BREITTMAYER, J.P. & FRELIN, C. (1995). ATP, a partial agonist of atypical P2Y purinoceptors in rat brain capillary endothelial cells. *Br. J. Pharmacol.*, **115**, 1199–1203.
- FLORES, N.A, STAVROU, B.M. & SHERIDAN, D.J. (1999). The effects of diadenosine polyphosphates on the cardiovascular system. *Cardiovasc. Res.*, **42**, 15–26.
- FRELIN, C., BREITTMAYER, J.P. & VIGNE, P. (1993). ADP induces inositol phosphate independent intracellular Ca²⁺ mobilization in brain capillary endothelial cells. *J. Biol. Chem.*, **268**, 8787–8792
- HALL, D.A. & HOURANI, S.M.O. (1993). Effects of analogues of adenine nucleotides on increases in intracellular calcium mediated by P2T-purinoceptors on human platelets. *Br. J. Pharmacol.*, **108**, 728–733.
- HARRISON, M.J., BROSSMER, R. & GOODY, R.S. (1975). Inhibition of platelet aggregation and the platelet release reaction by diadenosine polyphosphates. *FEBS Lett.*, **54**, 57–60.
- HECHLER, B., LÉON, C., VIAL, C., VIGNE, P., FRELIN, C., CAZENAVE, J.P. & GACHET, C. (1998a). The P2Y₁ receptor is necessary for ADP induced platelet aggregation. *Blood*, **92**, 152–159.
- HECHLER, B., VIGNE, P., LÉON, C., BREITTMAYER, J.P., GACHET, C. & FRELIN, C. (1998b). ATP derivatives are antagonists of the P2Y₁ receptor; similarities to the platelet ADP receptor. *Mol. Pharmacol.*, **53**, 727-733.
- HOYLE, C.H.V. (1990). Pharmacological activity of adenosine dinucleotides in the periphery: possible receptor classes and transmitter function? *Gen. Pharmacol.*, **21**, 827–831.
- HOYLE, C.H.V., ZIGANSHIN, A.U., PINTOR, J. & BURNSTOCK, G. (1996). The activation of P1- and P2-purinceptors in the guinea pig left atrium by diadenosine polyphosphates. *Br. J. Pharmacol.*, **118**, 1294–1300.

- JIN, J., DANIEL, J.L. & KUNAPULI, S.P. (1998). Molecular basis for ADP-induced platelet activation. II The P2Y₁ receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem., 273, 2030-2034.
- KING, B.F., LIU, M., PINTOR, J., GUALIX, J., MIRAS-PORTUGAL, M.T. & BURNSTOCK, G. (1999). Diinosine pentaphosphate (IP₅I) is a potent antagonist at recombinant rat P2X₁ receptors. *Br. J. Pharmacol.*, **128**, 981–988.
- LAZAROWSKI, E.R., WATT, W.C., STUTTS, M.J., BOUCHER, R.C. & HARDEN, T.K. (1995). Pharmacological selectivity of the clones human P2U-purinoceptor: potent activation by diadenosine tetraphosphate. *Br. J. Pharmacol.*, **116**, 1619–1627.
- MATEO, J., MIRAS-PORTUGAL, M.T. & CASTRO, E. (1996). Co-existence of P2Y- and PPADS-insensitive P2U-purinoceptors in endothelial cells from adrenal medulla. *Br. J. Pharmacol.*, **119**, 1223–1232.
- MIRAS-PORTUGAL, M.T., CASTRO, E., MATEO, J. & PINTOR, J. (1996). The diadenosine polyphosphate receptors; P2D purinoceptors. *Ciba Found Symp.*, **198**, 35–47.
- MIRAS-PORTUGAL, M.T., GUALIX, J. & PINTOR, J. (1998). The neurotransmitter role of diadenosine polyphosphates. *FEBS Lett.*, **430**, 78–82.
- PALMER, R.K., BOYER, J.L., SCHACHTER, J.B., NICHOLAS, R.A. & HARDEN, T.K. (1998). Agonist action of adenosine triphosphates at the human P2Y₁ receptor. *Mol. Pharmacol.*, **54**, 1118–1123.
- PINTOR, J., HOYLE, C.H.V., GUALIX, J. & MIRAS-PORTUGAL, M.T. (1997). Diadenosine polyphosphates in the central nervous system. *Neurosci. Res. Commun.*, **20**, 69–78.
- PINTOR, J., KING, B.F., MIRAS-PORTUGAL, M.T. & BURNSTOCK, G. (1996). Selectivity and activity of adenine dinucleotides at recombinant P2X₂ and P2Y₁ purinoceptors. *Br. J. Pharmacol.*, **119**, 1006-1012.
- RALEVIC, V., HOYLE, C.H. & BURNSTOCK, G. (1995). Pivotal role of phosphate chain length in vasoconstrictor versus vasodilator actions of adenine dinucleotides in rat mesenteric arteries. *J. Physiol.*. **483**, 703 713.
- SCHACHTER, J.B., LI, Q., BOYER, J.L., NICHOLAS, R.A. & HARDEN, T.K. (1996). Second messenger cascade specificity and pharmacological selectivity of the human P2Y₁-purinoceptor. *Br. J. Pharmacol.*, **118**, 167–173.
- STACHON, A., STEGEMANN, H., HOHAGE, H., RAHN, K.H. & SCHLATTER, E. (1998). Effects of diadenosine polyphosphates on the intracellular Ca²⁺ concentration in endothelial cells. *Cell. Physiol. Biochem.*, **8**, 175–184.
- VIGNE, P., BREITTMAYER, J.P. & FRELIN, C. (1998a). Analysis of the influence of nucleotidases on the apparent activity of exogenous ATP and ADP at P2Y1 receptors. *Br. J. Pharmacol.*, **125**, 675–680.
- VIGNE, P., FEOLDE, E., BREITTMAYER, J.P. & FRELIN, C. (1994). Characterization of the effects of 2-methylthio-ATP and 2-chloro-ATP on brain capillary endothelial cells. Similarities to ADP and differences from ATP. Br. J. Pharmacol., 112, 775–780
- VIGNE, P., HECHLER, B., GACHET, C., BREITTMAYER, J.P. & FRELIN, C. (1999). Benzoyl ATP is an antagonist of rat and human P2Y₁ receptors and of platelet aggregation. *Biochem. Biophys. Res. Commun.*, **256**, 94–97.

VIGNE, P., PACAUD, P., LOIRAND, G., BREITTMAYER, J.P. & FRELIN, C. (1998b). PPADS inhibits P2Y₁ purinoceptors in rat brain capillary endothelial cells and in rat ileal myocytes by an indirect mechanism. *Biochem. Biophys. Res. Commun.*, **244**, 332 – 235

WEBB, T.E., FEOLDE, E., VIGNE, P., NEARY, J.T., RUNBERG, A., FRELIN, C. & BARNARD, E. (1996). The P2Y purinoceptor in rat brain microvascular endothelial cells couples to inhibition of adenylate cyclase. *Br. J. Pharmacol.*, **119**, 1385–1392.

(Received October 25, 1999 Revised January 5, 2000 Accepted January 10, 2000)